初一数学竞赛讲座⑵

初一数学竞赛系列讲座

数学竞赛讲座

第2讲 数论的方法技巧(下)

四、反证法

反证法即首先对命题的结论作出相反的假设,并从此假设出发,经过正确的推理,导出矛盾的结果,这就否定了作为推理出发点的假设,从而肯定了原结论是正确的。

反证法的过程可简述为以下三个步骤:

1.反设:假设所要证明的结论不成立,而其反面成立;

2.归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、公理、定义、定理、反设及明显的事实矛盾或自相矛盾;

3.结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立。

运用反证法的关键在于导致矛盾。在数论中,不少问题是通过奇偶分析或同余等方法引出矛盾的。

初一数学竞赛讲座⑵

解:如果存在这样的三位数,那么就有

100a+10b+c=(10a+b)+(10b+c)+(10a+c)。上式可化简为 80a=b+c,而这显然是不可能的,因为a≥1,b≤9,c≤9。这表明所找的数是不存在的。 说明:在证明不存在性的问题时,常用反证法:先假设存在,即至少有一个元素,它符合命题中所述的一切要求,然后从这个存在的元素出发,进行推理,直到产生矛盾。

例2 将某个17位数的数字的排列顺序颠倒,再将得到的数与原来的数相加。试说明,得到的和中至少有一个数字是偶数。

解:假设得到的和中没有一个数字是偶数,即全是奇数。在如下式所示的加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此

第二列数字的和b+c≤9。将已知数的前两位数字a,b与末两位数

字c,d去掉,所得的13位数仍具有“将它的数字颠倒,得到的数

与它相加,和的数字都是奇数”这一性质。照此进行,每次去掉首 末各两位数字,最后得到一位数,它与自身相加是偶数,矛盾。故和的数字中必有偶数。

说明:显然结论对(4k+1)位数也成立。但对其他位数的数不一定成立。如12+21,506+605等。

例3 有一个魔术钱币机,当塞入1枚1分硬币时,退出1枚1角和1枚5分的硬币;当塞入1枚5分硬币时,退出4枚1角硬币;当塞入1枚1角硬币时,退出3枚1分硬币。小红由1枚1分硬币和1枚5分硬币开始,反复将硬币塞入机器,能否在某一时刻,小红手中1分的硬币刚好比1角的硬币少10枚?

解:开始只有1枚1分硬币,没有1角的,所以开始时1角的和1分的总枚数为 0+1=1,这是奇数。每使用一次该机器,1分与1角的总枚数记为Q。下面考查Q的奇偶性。

Word文档免费下载Word文档免费下载:初一数学竞赛讲座⑵ (共7页,当前第1页)

你可能喜欢

  • 培优辅导
  • 数学竞赛辅导
  • 初一数学竞赛试题
  • 初一数学竞赛辅导资料
  • 初一数学竞赛试卷
  • 数学竞赛中的数论问题
  • 初中数学竞赛讲座
  • 初中数学竞赛教程

初一数学竞赛讲座⑵相关文档

最新文档

返回顶部